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The choice of a waveform

BLER-SNR curves for MCS 0-23 (left to right) for LDPC
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What 6G would we like?

* Profitable _ o
— Verticals, industry, automotive * Velocity, latency, reliability
* Sensing
* NTN

* Inclusive, for all

_ , * Efficient amplification
— Coverage, low complexity options

* |Immersive

e Sustainable
— Energy efficiency

* For people
— People’s communications needs
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6G challenges
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The waveform has an impact in almost all of these
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6G KPIs (ITU vision beyond 2030)

Data Rate
(Gbps)

Peak Data Rate
(Gbps)

* Throughput/data rate up to 1 Tbit/s (x50
5@G)

* User-experienced data rate of 1 Gbit/s
(x10 5G),

* End-to-end latency less than 1 ms

> spectral Effciency * Vehicle speeds of up to 1,000 km/h

* Localization precision equal to 1 cm in
three dimensions

* Etc...

Energy Efficiency

Reliability .

Connection Density Air Latency
(devices/km?) (ms)



6G KPIs (ITU vision beyond 2030)

Spectrum availability -> operating carrier  /~

. : ~
frequency to unprecedently high values -> gg;oughput/data rate up to 1 Thit/s (x50
amplification and RF impairments are . User-experienced data rate of 1 Gbit/s
more severe 10 5C

Short symbols vs Long symbols * End-to-end latency less than 1 ms
Channel variability -> pilots, ICI » Vehicle speeds of up to 1,000 km/h
ISAC: integrated communications and * Localization precision equal to 1 cm in

sensing ~ three dimensions
* Ltc..

Can we still use the same waveforms as in
4G / 5G?



Multicarrier Waveforms

* Robust to multipath
propagation o e coment
* Easy implementation (FFT) ¢
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Multicarrier Waveforms
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Revisiting PAPR -
Constant envelope




Reducing the PAPR (with pre- or post-
processing)

* SC-FDMA (DFTs-OFDM)
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* Constant envelope

 Time-domain + frequency-domain

scheduler

» Y subcarriers “lost” to ensure
hermicity (real signal)

* Channel estimation at the Rx before
the DFT



Reducing the PAPR (with pre- or post-
processing)

Total degradation
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Revisiting High mobility
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FM-OFDM

* Doppler and phase noise effects are avoided with a cut-
off frequency:

ko > max(fp, Wpn)
v SCS |

* FM-OFDM can overcome phase and frequency
impairments without any channel estimation or
equalization in flat-fading channels.

e CSl estimation is needed (only) in frequency-selective
channels.




MMSE equalization in CE-OFDM and CP-

F M - O F D M OFDM with ideal channel estimation,

whereas no equalization in FM-OFDM

* If the channel changes even within an OFDM symbol
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FM-OFDM in NTN

NTN-TDLCS (v =5 ns, v = 1000 km/h), Phase Noise, QPSK, LDPC 1/2
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Revisiting Channel estimation




PSAM vs superimposed training

PSAM = pilot symbol aided modulation (classical
pilots in the time-frequency grid) with channel
estimation and compensation in the freq domain

freq

e Channel estimation and compensation in the freq time
domain does not work for CE-OFDM, FM-OFDM

* Superimposed training works better in the time

domain. Averaging is needed to cancel interference o
=

 CE-OFDM and FM-OFDM may suggest different
ways of superimposing the pilots (phase domain)




ST for CE-OFDM: phase-domain injected training
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Pilot pouring in CB-FMT and FM-OFDM

K — 1 spectrum holes

______ - : e Spectrum of FM-OF DM signal
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Coherent communications need acquiring CSI

K ignal = pilot
nOWN S8 otp Received signal y=f(p,h) -> h
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— They achieve rates which are not different from coherent schemes in a scaling law sense

Non-coherent massive MIMO

 ASK (amplitude shift keying) energy-detector schemes

e Differential PSK schemes

— Single user with improved performance (wrt req. number of antennas)

— Multi-user through constellation design

=
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Multi-user constellations for NC massive MIMO
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Combination of coherent and non
coherent schemes

high

Doppler spread (1 <N, <14)

low

CDS
(PSAM or ST)

low high
Delay spread (1 =K, = 12)

Most of the pilots can be replaced by NC data
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Revisiting the time —
frequency grid: A new grid
for ISAC?




Transmitting in the Delay — Doppler grid

 OTFS: Orthogonal Time Frequency Space is a 2D
modulation technique that carries the information in
the Delay-Doppler coordinate system

e There are other multicarrier variants with similar
approach, e.g. ODDM

e DFTs-OTFS as well!



OTFS with discrete Zak transform
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CSl for OTFS with superimposed training

Our pilot design makes it possible to perform an averaging method in the DD domain - interference and

the noise can be reduced X = Bxa ++/1 - Bx,
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Extracting positioning information from
the CSI with superimposed training
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Flexibility

* There is ho one-size-fits-all

* All these waveforms share an IFFT/FFT architecture

* Pilots can be also differently distributed in the time-freq (or
another) grid

* Flexible waveforms and pilot structures (incl. without pilots)




Flexibility in standards

e Can DPSK- based MCS

Coding Schemes in GPRS be added?

MCS in EDGE
Variable SF in UMTS
MIMO Modes in LTE

Cell-centric vs User-centric
reference signals in LTE-A

Numerology in 5G NR

e Can optional precoding
/ postcoding be
allowed?

e Can reference signals
have more diverse
formats or even be
allowed to be removed?
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